Current Issue : January-March Volume : 2022 Issue Number : 1 Articles : 5 Articles
In this paper, we describe a low-cost microwave microfluidic system of ultrahigh sensitivity for detecting small changes in the concentration of polar solutions (liquid dielectrics) in the 2.4 GHz ISM band. Its principle of operation is based on microwave interferometry, which is implemented using planar microstrip lines and integrated microwave components. The key features of this system include small solution intake (<200 _L per measurement), short time of measurement (ca. 20 ms), ultrahigh sensitivity of concentration changes (up to 55 dB/%), and low error of measurement (below 0.1%). The ultrahigh sensitivity was proven experimentally by measurements of the fat content of milk. In addition, it is a user-friendly system due to an effortless and fast calibration procedure. Moreover, it can be made relatively compact (<20 cm2) and features low power consumption (200 mW). Thus, the proposed system is perfect for industrial applications, especially for highly integrated lab-on-chip devices....
The ongoing development of high-temperature processes with the use of microwaves requires new microwave absorbers that are useful at these temperatures. In this study, we propose Al4SiC4 powders as important and efficient microwave absorbers. We investigated both the behavioural microwave heating and electrical permittivity characteristics of Al4SiC4 powders with various particle sizes at 2.45 GHz. The TE103 single-mode cavity indicated that Al4SiC4 powder samples yielded different heating behaviours and dielectric constants for each particle size compared with SiC. By microwave heating Æ50 mm * 5 mm disks of Al4SiC4 and SiC, we demonstrate that for specific sizes, Al4SiC4 can be heated at a higher temperature than SiC. Finally, the results of the two-dimensional two-colour thermometer show that an energy concentration appears at the interface of the microwave-heated Al4SiC4. These phenomena, which are inconsistent in individual physical property values, can be explained without contradicting microwave heating physics....
This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device. A new approach employing the information of a displacement laser and the cavity perturbation technique was used to determine the relationship between the dielectric properties of the specimens and the resonance response of the probe, avoiding the use of distance-following techniques. The accuracy of the dielectric measurements was evaluated through a comparative study with other well-established cavity methods, revealing uncertainties lower than 5%, very similar to the accuracy reported by other more sophisticated setups. The device was employed to determine the dielectric map of a watermark on a 20 EUR banknote. In addition, the penetration capabilities of microwave energy allowed for the detection of the watermark when concealed behind dielectric or metallic layers. This work demonstrates the benefits of this microwave technique as a novel method for identifying anti-counterfeiting features, which opens new perspectives with which to develop optically opaque markers only traceable through this microwave technique....
The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae (“standard”), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 C to 220 C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries....
Bauxite residue (red mud), which is an industrial byproduct, contains valuable trace elements. Solid NH4Cl was used as a chlorinating agent during the microwave heating of red mud to convert trace elements into soluble metal chloride. Red mud was heated using microwave ovens under various conditions (i.e., with the addition of solid NH4Cl and with a range of microwave output powers and microwave heating times). Leaching tests were then conducted using deionized (DI) water on the microwave-heated red mud to leach trace elements from red mud. V, Cr, and As were selectively leached from the microwave heated red mud slurry (30% water content), whereas Mn, Cu, Co, Ni, Zn, and Pb were selectively leached from the microwave-heated red mud with the addition of solid NH4Cl. The oxides of V, Cr, and As in red mud could be transformed into metal chlorides by chlorination, which are insoluble in water, or could be easily volatilized when red mud was microwave-heated in the presence of solid NH4Cl. On the other hand, the oxides of Mn, Cu, Co, Zn, Ni, and Pb in red mud could be heated rapidly by microwave irradiating, resulting in metal chlorides in the presence of solid NH4Cl. Those metal chlorides are relatively soluble in water, leading to higher leaching efficiency for microwave-heated red mud with the addition of solid NH4Cl. Experimental results suggest that trace elements from red mud can be selectively leached by microwave heating of red mud without or with the addition of solid NH4Cl....
Loading....